Automatic exploration of VLIW processor architectures from a
designer’s experience based specification

M. AUGUIN, F. BOERI, C. CARRIERE

Lab. Informatique Signaux Systemes (I3S), 41 Bd Napoléon 111
06041 Nice cedex - France. e-mail : auguin@mimosa.unice.fr

Abstract :

This paper presents a new synthesis approach for dedicat-
ed systems. The aim of our synthesis scheme is to achieve
an automatic exploration of VLIW processor architectures
froma pure C description of the input system. The innova-
tion consists in the fact that unit allocation must manage
the fact that a function may be realized either by dedicated
functional units or by a set of lower-level efficiently con-
trolled functional units. For example, execution of a
square root function can be accomplished by two ways: ei-
ther by a dedicated functional unit or by an oriented soft-
ware implementation of Newton's iterations. The aim is to
find the best global trade-off between all the candidate ar-
chitectures. In order to illustrate this synthesis scheme, we
give an example issued from a sonar application.

1. Introduction

Numerous applications of tclecommunication, signal and
image processing require high specd computing perfor-
mances with severe embedding constraints. Improvements
of both hardware and software technologies induce mov-
ing boundaries between hardware and software parts of a
system. Moreover, each system has a life cycle :

«At beginning, a prototype which makes use mainly of
software components is realized.

*After, successive realizations are produccd with im-
proved performances and higher embedding capa-
bilities. At each step, software fonctionnalitics are
replaced either by more efficient ones (algorithmic
or processing units) or by hardware units.

The ideal design approach consists in deriving or synthe-
sizing successive realizations from the same specification.
Thus, different explorations of an hardware/software de-
sign space defined by specifications and constraints are
needed to exhibit successive solutions.

Recent works propose codesign or cosynthesis methodol-
ogies. For example, approaches in [10],[8] deal with a C

0-8186-6315-4/94 $04.00 © 1994 IEEE

style specification augmented with timing constraints, task
concept and communication facilities. In these approaches
partitioning the specification is based on cost functions
that estimate software, hardware and communication char-
acteristics. As mentioned in [19], performance prediction
is extremely difficult and may lead to sub-optimal solu-
tions. An object oriented approach is used in [20]. Perfor-
mance measuring is performed through a complete
compilation of the software part and a complete synthesis
of the hardware part.

In contrast, cosimulation frameworks [4],[20] are able to
analyze decompositions of specifications but important
portions of respective simulation models are manually de-
duced. Nevertheless, an important aspect of analysis based
approaches is that they can reap benefit from designer’s
cxperience to producc cfficient realizations.

We propose a synthesis tool which is able to explore sev-
eral solutions, corresponding to different decompositions
according to the designer’s experience. This approach con-
sists in a trade-off between automatic synthesis methods
based on characteristics estimation, and design methods.

The aim of advanced compilation techniques for VLIW
(microcoded), superscalar and pipelined processors is to
oplimize utilization of hardware resources according to the
fine grain parallclism of the target application
[131,{91,[18],115]). High performances on fine grain archi-
tectures are achicved with these microcode compaction
techniques. Thus the relative efficiency of a hardware-soft-
ware solution depends on i) the efficiency of the hardware
part and, ii) the amount and speed of communications. On
general purpose processors, parallelism exhibited by mi-
crocode compaction techniques is generally restrained by
memory throughput and access time. Cache memories are
used to reduce the average access time. Consequently, to
achicve higher performances than software solutions, the
synthesis of hardware modules must pay particular atten-
tion to thc maximum use of resources. Advanced code gen-
eration techniques can bc used in synthesis methods to

improve efficiency of hardware units {3]. The basic con-
cept of simultaneous generation of instruction set and pro-
cessor synthesis for application specific design is a
variation of microcode compaction {12].

The rest of the paper is organized as follows. Section 2 de-
scribes methodology and principles involved in our syn-
thesis scheme. Next, more details on our synthesis
methods are given. In section 4 and 5, the test application
and synthesis results are presented. Section 6 draws some
conclusions and futur works.

2. Overview of our
cosynthesis method

firmware/hardware

Generally, functional descriptions of telecommunication,
signal and image processing applications consist in a pro-
gram, often written in C. Considering this specification for
synthesis avoid to translate it into a formalism dedicated to
cosynthesis. The algorithmic expression of the application
includes usually calls to specific functions (e.g. FFT, cor-
relation, FIR filter) which consume the major part of the
total number of numerical operations. Increasing their per-
formances with respect to RISC or DSP processors re-
quires specific functional units (FUs) which allow a more
efficient chaining of operations. Therefore, according o
the target application, FUs must be tailored in the hardware
part. Consequently, we propose that in the initial specifica-
tion, the realization (firmware or hardware) of consuming
operations, identified by the designer according to his own
experience, is not fixed. Evaluations of different firmware/
hardware solutions are performed by the synthesis process
of the specification (Fig. 1).

External functions can be declared in the initial algorith-
mic system model. Firmware/hardware implementations
of these functions are defined in a library. Then, different
specifications are build up. They make use of the different
ways of implementation of external functions. A synthesis
procedure of microcoded architectures is applicd on these
clever specifications (candidate descriptions). A setof im-
plementation models satisfying designer’s constrainls are
produced. Each implementation model consists ina VHDL
structural description, an optimized microcode and a per-
formance report. In the next section, details on systcm
modeling are given.

2.1 Specification model

Generally, a functional model of applications from telc-
communication, signal and image processing domains,
consists in a program (often C). This program derives di-
rectly from the algorithmic expression of operations 1o ex-
ecute on the system’s inputs. It is of primary importance

109

for verification that the specification model for synthesis
remains executable.

6Iorithmic descriptioa System model

Y

Construction
of candidate
descriptions

~—3

Library of implementation
¢ models of external functions

@ndidate description9

Hardware
constraints

Firmware/Hardware 4——-—@

synthesys Library of FUs

Set of implementation models

Implementation

model
Performance evaluation

Microcoded control

VHDL structural model

»

Set of FUs Interconnection

\ Fig. 1 » Firmware/hardware synthesis method /

In Fig. 2 « is given an cxample of a bit reversal operation
in a FFT program. The bit reversal function is external to
the main program. Descriptions of algorithmic or hardware
realizations of this function are placed in the library of im-
plementation models. In the hardware model section, the
name #bit_reversal refers to at least one entry in the library
of FUs (Fig. 1 ¢). In Fig. 2 « only one algorithmic imple-
mentation is illustrated.

For each external function, several algorithmic models,
corresponding to different software realizations, can be
placed in the library of implementation models. An algo-
rithmic model can refer itself to a functional unit (algorith-
mic or hardware model) of the library of implementation
models.

/ Library of \

implementation models

\

FFT main program
prog /functional_unil

bit_reversal is

main ()
{ algorithmic_model :
extern int bit_reversal() int bit_reversal(int
. index,int n)
int 12n,m,q,k,j;

for i=0;1<n;i++)
(AT
k = bit_reversal(i,n) ; m =n/2;
if (i> k) \\\ﬁ(]
{xtempr = xr(k] ; k
xtempi = xi[K] ;

xr(k] = xr[i] ;
xifk] = xifi] ;

’

1
0;
for (j =0; j <I2n; j++)

{if (index >=m)
{(k=k+q;

index = index - m ;}

xi[i] = xtempi ; 4=9%2;
) m=m/2;}

N

xr{i} = xtempr ;

rewrn k ;}

hardware_model :
#bit_reversal(k,n);

}

Qd functional _unit ;/

Fig. 2 - Example of an algorithmic/hardware descrip-
@n of a bit reversal operation /

Generation of candidate descriptions for synthesis is ac-
complished by selecting different realizations of cxicrnal
functions of the main program.

This algorithmic specification model allows an casy gen-
eration of at least one executable softwarc codc for func-
tional verification on real inputs.

2.2 Generic architecture

The target of our synthesis method is a VLIW architccture
composed of three major parts:

 a microcoded control part,
» a data memory system,

= and a processing module with specific synthesized
hardware units (FUs).

110

Guidclines for a microcoded style architecture suited for
signal and video applications given in [6] depict a synthe-
sis method of microcoded DSP processors from a Si-
lage[11] description of the application. Unfortunatcly,
data-path composition and memory organization are per-
formed manually.

Multi-dimensional signal processing requircs the memori-
zation of large arrays of variables. Thus, our generic archi-
tecture contains a data memory and it is able to perform
address computations.

Processing modules are constructed with FUs that are de-
scribed in the library of FUs. FUs can be multi-functions
and pipclined. Pipelining FUs may be of primc importance
in order to reduce the cycle time of the architecture.

The generic architecture is of VLIW type. Scheduling and
allocation phases of the synthesis process are issuced from
microcode compaction techniques for VLIW processors.
For example, loops which represent regular computations
on structured arrays are vectorized, i.c. several executions
of the body loop arc overlapped. The objective is to
achicve an utilization ratc of 100% of at least one resource
of the architecture. A software pipelining technique [7] is
uscd for implementing vector processing. But unfortunate-
ly veetor processing increases the number of simultaneous
live variables and thus the size of registers in the process-
ing module.

The synthesis of VLIW microcoded processors is accom-
plished by the CAPSYS system [14],[2].

3. Overview of CAPSYS

CAPSYS inputs an algorithmic description of a target ap-
plication, a set of physical constraints and an optional pre-
defined architecture. It provides:

+ optimized dedicaicd VLIW architectures,
« the associated object microcodes of the application
* performance reports.

An optional CAPSYS-typc predefined architecture gives
to the designer the possibility of performing incremental
synthesis. If the predefined architecture is incomplete,
with respect Lo the requirements of the target application,
then CAPSYS adds FUs that are required to cover opera-
tions of the input program. For example, technology im-
provements of an architecturc or the adaptation of an
existing design 1o another application arce possible [17].

The first phase of CAPSYS consists in compiling the input
program of the application. The program is decomposed
into basic blocks [1]. Each instruction of a basic block is

represented with a dependence graph. Each node of the de-
pendence graph may be either a microtask deduced from
the arithmetic or logical operations of the input program or
a microtask required for memory management. The sct of
graphs of the whole program constitutes a control and data
flow graph (CDFG). The synthesis process of CAPSYS
may be divided into six steps (Fig. 3 *).

1. Labeling CDFG with the predefined architecture: If
a predefined architecture is declared, microtasks which
have a realization in this architccture are labeled only with
declared FUs.

2. Labeling with FUs: For each microtask of the CD-
FG, CAPSYS looks for FUs in the library of FUs which are
able to realize it. The microtask is then labeled with a list
of FUs.

3. Allocation and scheduling: this step produces mod-
cls of architectures. The scheduling algorithm is bascd on
the list-scheduling or scalar code scctions of the input pro-
gram and software pipelining or vector code sections.
When all microtasks of CDFG are scheduled, we get archi-
tectural models, each one composed of a list of FUs and the
microcode associated with these FUs for executing the tar-
get application. The aim of the next steps is the synthesis
of interconnection between FUs.

/

Labelling Labelling Allocation

CDFG | with the pre- with FU’s and
defined ar- || MOACIS gt scheduling
chitecture

_ Generation of architectural models /

Reduction of Definition Definition

CDFG with of virtal of intercon-
®Tthe prede- | paths nection units

fined archi-

tecture

N Interconnection synthesis /

Complele Architectures

Qg. 3 « The six steps of the synthesis process in CAPS?

111

4. Edges of a CDFG correspond to data transfers be-
tween FUs. If a predefined architecture is provided, all
edgces with data transfers covered by the predefined archi-
tecture are removed in the fourth step.

5. FUs produce and consume data on input and output
ports. Edges with different production and consumption
times may be gathered in virtual paths. The aim of the fifth
step is to minimize the number of virtual paths. Four meth-
ods are coded in CAPSYS [5]. The first two ones operate
directly on edges of CDFG. They are based on an edge col-
oring method and a greedy algorithm. The last methods
perform a preprocessing on edges in order to reduce the
number of muitiplexers and physical links. For example,
cdges describing data transfers to the same input port of a
FU arc grouped in logical connections. Then, either a
greedy algorithm or a maximum compatible method is ap-
plied in order to produce virtual paths.

6. In the last step, register files, multiplexers and logi-
cal links are determined. It is important to note that regis-
ters have a double purpose. They assume the memorization
of data between production and consumption by FUs and
between load (respectively store) operations in the data
memory and consumption (production) by FUs. Further-
more, operators and registers are used not only for opera-
tions on variables but also, for address computations.

In the next section the translation of a specification into
firmwarc/hardware is introduced.

3.1 Translation of a specification

When the input program involves external function, a set
of intermediate programs is built by a recursive procedure.
The input program is the first intermediate program. When
an intcrmediate program contains an external function
(EF1), intermediate programs arc generated. In the first
onc, no change happens since external functions have a
hardware realization. The others intermediate programs
are obtained by replacing each external function EFi by ei-
ther a software implementation or a hardware realization.
This procedurc is applied for cach different external func-
tion that appears in the input program and for each inter-
mediate program.

Notice that no use of external function reference is allowed
in software implementation models.

Then each intermediate program is compiled into an inter-
nal representation (CDFG) which defines the abstract level
(generic architecture) from which synthesized systems are
produced. Nodes of the CDFG correspond to microtasks
and cdges describe control and data dependencies between
microtasks. Fig. 4 « depicts a graph associated to an in-
struction of form “x=y + z;”. Addition operates on valucs

issued from the data memory and produces a result which
is in turn stored in the data memory. Synthesis of the graph
of Fig. 4 « requires that for each microtask, there exists at
least one FU in the library of FUs, that is able to realize it.

Microtasks of Fig. 4 = are primitive ones corresponding to
basic operations of the input program. This type of graph
is obtained when input C programs do not include hard-
ware models of FUs.

‘When an external function of the C input program is imple-
mented with an hardware model (Fig. 2 ¢), a generic oper-
ator is used in the internal representation (Fig. 5 ¢). The
generic operator “‘op_generic” is labelled with the name of
the function (“bit_reversal” in example of Fig. 5 «). Atleast
one FU in the library of functional unit must have a method
(or function) with the same name.

3.2 Scheduling and FUs Allocation

When the translation of the input program is ended, CAP-
SYS executes the scheduling and FU allocation phases in
the same time. It begins to annotate nodes of CDFG by
FUs that can run the corresponding microtask.

With the annotated CDFG, a tree of candidate architectures
that verify the designer’s constraints like cost, area, con-
sumption is built with the following recursive procedure.

At the beginning, the initial list (LFUs) of FUs that com-
pose the architecture is empty.

Then for each microtask Mi that may be scheduled, differ-
ent cases occur:

« There exists one free FUe LFUs to realize Mi.
Mi is scheduled.

« There is one FUe LFUs to realize Mi but this FU is
busy.

If the designer’s constraints are not overstepped, the
method adds a resource to LFUs. In the other case, Mi
will be scheduled when one FUe LFUs will become
free.

* There is no FUe LFUs to realize Mi.

If the designer’s constraints are not overstepped, the
method adds a resource € LFUs. In the opposite case,
no solution are provided.

When a resource is added to LFUs, as much candidate ar-
chitectures are created with the recursive procedure as
there are FUs that are able to realize the considering micro-
task.

The scheduling and allocation phase of CAPSY S produces
architectural models with instantiations of FUs performing
microtasks of the internal representation. This specifica-
tion space exploration technique is illustrated in the next
scction with an example of a signal processing unit of a
simplified sonar system.

/

assign

adr_depl

lit

/* Memory store of x variable */

/* Transfer from processing unit 1o data memory */

/* Memory load of y variable */

/* Address computation with immediate */

/* Transfer of offsct for address computation*/

' /* Addinon */
seq_to_ua
v bm_to_pt _to_
litt v '
val val
Y Y
adr_depl adr_depl
\ Y
seq_to_ua seq_to_ua
\ '
litt

/* Addressing olfset of y vanable*/

Fig. 4 « Graph of instruction “ x=y + z ; *.

ﬁ

112

o
'

adr_depl Access to the
v right element
in array “vector”
pt_to_ua

. Generic microtask
OP_GENERIC (bit_reversal) [abelled with a bit

' reversal operation
bm_to_pt

\

val

\

adr_direct

\

seq_to_ua

\

litt

Access to the
loop index i

\ /

Instruction :

sorted output := vector[#bit_reversal(i)] ;

Fig. § - Examplc of implementation of a bit re-
K versal operation with the generic microtask.

Example : a signal processing unit of a
sonar system

In a simplified real time sonar application (Fig. 6 »), 64
samples are delivered every 5 ms to a signal processing
unit (SPU). The SPU has two functions. First, it performs
a 256 point-FFT on input samples.

First, it performs a 256 point-FFT on input samples. The
second step consists in a signal detection process with a
noisc power estimation and an adaptative thresholding de-
pending on the signal/noise ratio (SNR). SPU transmits bin
numbers, bin values, and SNR of the detected signal to a
data processing unit (DPU). The objective is the realiza-
tion of an optimized structure of SPU.

We assume that signal samples are pushed into an input
FIFO. SPU places values addressed to DPU into an output
FIFO. Operations arc performed in a 24 bits integer format.
FUs used to synthesize (ALU, multipliers, file registers,
sequencer for example) SPUs are developed with an ASIC
VHDL synthesis tool and a 1.0 micron cmos library.

S.

A classical Cooley-Tuckey radix-2 FFT algorithm is im-
plemented in the initial C specification program of the so-
nar application. This specification is executable on a
workstation in order to verify its behavior on real values.
In this program, input and output FIFOs are not described,
samples are rcad from a data file and bin values are plotted
on screen. These I/O operations are replaced in the C spec-

Results

/

\

Samglei Beam
Forming System to implement
T
% Input FIFO
- 1x 256-pointFFT on a 20 ms window,
FFT every 5'ms
Output FIFO
77 bins 1 Filter |9 Threshold -—4"'—-’
time of arrival
' bin number
bin value
time SNR
\ 40 FFTs

-

Fig. 6 « Signal processing unit (SPU) of a simplificd sonar system

113

ification program by external function calls that perform
pull and push operations respectively on input and output
hardware FIFOs. The bit reversal operation is implement-
ed with an algorithmic procedure (Fig. 2 «). This initial
specification is then synthcsized by CAPSYS. Without
vectorisation of loops we get an architecture with an cxe-
cution time of 80ms that is too large with respect to timing
constraints (5 ms).

We dispose of three directions to achieve higher perfor-
mances: i) utilization of specific hardware units, ii) vec-
torisation of loops, and iii) algorithmic modifications.

Since an important gap of performances is required, an
hardware bit_reversal module is introduced in the library
of implementation models, the library of FUs contains a
model of a three stages pipelincd multiplier (pMul), and
the internal loop of FFT is vectorized. We get system S1in
Table 1.

An improvement in the vectorisation consists in a scparate
execution of the two first stages of FFT in order o consider
particular values of the twiddle factors. This leads 10 sys-
tem S2 which verifies the timing constraint. The execution
time of 4.7 ms includes pull operations of samples from the
input FIFO and push of detected bins into the output FIFO.

Each stage of the radix-2 FFT computes N/2 butterfly op-
erators for a N points Fourier transform. Instructions of the
internal loop of the FFT are replaced by an external func-
tion call to a butterfly hardware module. We get then sys-
tem S3 which has about the same performance than S2 but
with twice the number of gates. This result illustrates the
efficiency of software pipelining: operations on ALUs and
pipelined multipliers are very well interleaved and the [ine
grain parallelism is especially limited by the data memory
throughput. Therefore, a hardware operator which results
from a particular arrangement of adders and multiplicrs,
cannot improve performances significantly.

In a vectorized radix-2 FFT, sizes of vectors are halved at
cach stage. Thus cificiency of software pipelining is re-
duced when sizes of veclors are 100 short. Consequently
we consider an FFT with constant topology [16]which has
vectors of size N/2 during all the processing flow. The re-
sulting system S4 is composed of less FUs than previous
ones and it satisfies the timing constraint with a lower
clock cycle.

As mentioned above, the data memory limits performanc-
es. Thus we modify the input specification by declaring ex-
ternal functions implemented as hardware FUSs:

* Two local memorices arc introduced in the processing
unit in order to increasc the global throughput of data.

* A read only memory for twiddle factors of the FFT is
also placed in the processing unit.
With these features, we get system S5 which has a perfor-

mance of 2.4 ms. Conscquently processor S5 is able to re-
alizes operations associated with two beams.

Realization of the FFT (without the bit reversal operation)
is performed in 4*Nlog(N) cycles on S5. Notice that on a
TMS320C40, a complex radix-2 FFT is executed in
5*Nlog(N) cycles. However, there are more operations re-
quircd in the constant topology FFT than in the Cooley-
Tuckey implementation. But, if two local memories are
added to S5, the constant topology FFT is executed in
2*Nlog(N) cycles.

6. Conclusion

This paper illustratcs the importance of a synthesis/evalu-
ation ool of different specifications deduced from an ini-
tial C program description of the target application.

Our approach consists in a specification space exploration
driven by various realizations of external function calls in
the initial specification. Thesc realizations are either of al-
gorithmic type and translated into firmware or of hardware

Table 1. Synthesized sonar systems

FUs clock | Number of Execution time
(ns) gates

S1 3*ALUs, 2*pMuls, 1*Bit_rcversal 45 28.000 10 ms

S2 3*ALUs, 1*pMul, 1*Bit_reversal 45 22.000 4.7 ms

S3 3*ALUs, 2*pMuls, 1*Bit_reversal, 1*Buuterfly 45 42.000 4.9 ms

S4 1*ALUs, 1*pMuls, 1*Bit_reversal 60 19.000 4.8 ms

S5 2*ALUs, 2*pMuls, 1*Bit_rcversai2*Local memories, 60 86.000 2.4 ms
1*ROM factors

type. The synthesis/evaluation tool proposes rcalizations
of these derived specifications.

Designer’s experience is of prime importance to guide the
synthesis process in order to profile a system that maiches
constraints: we think that it would be preferable to consider
a (co)synthesis tool as a program which is able to perform
an efficient space and time decomposition of a specifica-
tion rather than an automatic partitioning method that im-
plements only one synthesis scheme.

In this paper, we focus on firmware/hardware target sys-
tems since scheduling techniques for VLIW type proces-
sors are very efficient. Particularly, an horizontal
microcode is well suited to control parallel/pipcline pro-
cessing in an hardware unit. This unit could be considered
as a dedicated multi-function co-processor of a gencral
purpose processor. We plan to extend our work 10 a soft-
ware/firmware/hardware cosynthesis method from a C
program description.

7. Bibliography

[1JAHO A.V.,SETHIR., ULLMAN J.D. Compilers, prin-
ciples, techniques and tools. Addison-Weslcy, 1986.

[2JAUGUIN M., BOERI F., CARRIERE C., MENEZ G.
Synthesis of dedicated SIMD processors. Proceedings
Application Specific Array Processors. Venisc, October
25-27, 1993.

[3]BRETERNITZ M, SHEN J. P. Architecture synthesis
of high performance application-specific processors. Pro-
ceedings 27th Design Automation Conf., pages 542-548.
Orlando, june, 1990.

[4]BUCK J.,HA S.,LEE E.A., MESSERSCHMITT D.G.
Piolemy: a mixed paradigm simulation/prototyping plat-
form. Proceedings of Speech Tech. New York, April 23-
25, 1991.

[SICARRIERE C., AUGUIN M., BOERIF., MENEZ G.
A comparison study of minimization methods of unit inter-
connection in VLIW processors. Proceedings EUROMI-
CRO-92, pages 595-602. Paris, scptember 14-17, 1992.

[6]CATTHOOR F. Microcoded processor architectures
and synthesis methodology for real time signal processing.
Proceedings Algorithms and Parallel Architectures, pages
403-429. Poni-a-Mousson, France, june 10-16, 1990.
[7IEISENBEIS, C. Optimization of horizontal microcode
generation for loop structures. Proceedings International
Conf. on Supercomputing. Saint Malo, july, 1988.

[8]JERNST R., HENKEL J., BENNER T. Hardware-Soft-
ware Cosynthesis for Microcontrollers. IEEE Journal
Design and Test of Computers. 64-75, december, 1993,

115

[91GAO G.R. ctal. A timed Petri net model for fine grain
loop scheduling. SIGPLAN91 Conference on PLDI. junc,
1991.

[10]GUPTA R.K., DE MICHELI G. Hardware-Software
Cosynthesis for Digital Systems. [EEE Journal Design
and Test of Computers. 29-41, september, 1993.

[11]HILFINGER P.N. Silage a high level language and sil-
icon compiler for signal processing. IEEE Conference on
Custom Integrated Circuits, pages 213-216. Portland,
may, 1985.

[12]JHOLMER B.K., PANGRLE B.M. Hardware-soft-
ware-codesign-using-automated-instruction-set-design.
Proceedings Int. Workshop on Hardware-Software Co-
Design. Cambridge, Mass., October 7-8, 1993.

[13]JLAM M.S. Software pipelining : an effective schedul-
ing tcchnique for VLIW machine. ACM SIGPLAN'88 Con-
ference on PLDI. Alanta, june, 1988.

[14]MENEZG., AUGUIN M., BOERIF., CARRIERE C.
A partitioning algorithm for system level synthesis. Pro-
ceedings ICCAD92, pages 482-487. Santa-Clara, Califor-
nia, november 8-12, 1992,

[15]MOON S.M., EBCIOGLU K., AGRAWALA A K.
Sclective scheduling [ramework for speculative operations
in VLIW and superscalar processors. IFIP Working con-
ference on Architecture and Compilation Techniques for
Fine and Medium Grain Parallelism, pages 229-242.
Orlando, january 20-22, 1993.

[16]STONE H. S. Parallel processing with the perfect
shuffle. IEEE Transactions on Computers. C-20153-161,
Feb., 1971.

[17]JAUGUIN M., BOERI F., CARRIERE C., MENEZ G.
Incremental synthesis of application domain specific pro-
cessors. Proceedings ICASSP-93, pages 1425-1428. april
27-30, 1993.

[18JWANG J., EISENBEIS C. Decomposed software
pipelining a new approach Lo exploit instruction level par-
allelism for loop programs. {FIP Working conference on
Architecture and Compilation Techniques for Fine and
Medium Grain Parallelism, pages 3-14. Orlando, january
20-22, 1993.

{19JWOLF W.,MARTINEZ J.C. C Program Performance
Estimation for Embedded Systems Architecture Sizing.
Proceedings Int. Workshop on Hardware-Software Co-
Design. Cambridge, Mass., October 7-8, 1993.

[20]WOO N.S., DUNLOP A.E., WOLF W. Codesign
from cospecification. IEEE Computer Journal. 42-47, jan-
uary, 1994,

